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ABSTRACT: Nanometer-sized particles that are well dispersed in a polymer melt,
presumably due to strongly favorable particle−polymer interactions, can form fractal
structures via polymer bridging, leading ultimately to a nanoparticle (NP) network
analogous to a colloidal gel. The linear viscoelastic response of polymer nanocomposites can
be quantitatively predicted by a parameter-free model in which the stress is a simple sum of
contributions from the polymer matrix and the fractal NP structure linked by bridging
polymer chains. The NP contribution is modeled using critical percolation, while the
polymer part is enhanced by the presence of particles, owing to hydrodynamic interactions.
The phase diagram at the right shows that small NPs are needed to achieve the stronger
reinforcement from glassy bridges at reasonable particle loadings.

I t is well-known that the addition of nanoparticles (NPs) can
mechanically reinforce a polymer matrix.1,2 The mechanism

of reinforcement, however, remains in debate. At one extreme,
Long and co-workers3,4 used the fact that chain immobilization
occurs around NPs; they suggested that mechanical reinforce-
ment results when the NPs with the “bound” glassy layer
percolate. A second scenario proposed by Goritz,5 and
elaborated by Sternstein,6−8 is that the NPs form a flexible
network, with the polymer chains forming the “bridges”
between the NPs. A simple way to resolve the mechanism of
reinforcement is to study NPs in a polymer melt far above Tg,
in the limit where the chains and the NPs have a strong
favorable interaction with each other. In this case, the
improvement in mechanical properties on the addition of
NPs can be described by critical percolation, as the polymer−
particle bonds are effectively permanent (having lifetime much
greater than 1000 s). With increasing NP concentration, there
is a transition from a sol-like suspension, where NPs with their
adsorbed bound polymers form separated branched structures,
to a gel-like ensemble, where most NPs form a network
percolating across the whole system.1,9−11

To understand this connectivity transition and its relation-
ship to mechanical reinforcement, two basic questions should
be addressed: (1) How do the NPs percolate? and (2) How is
the percolation related to the mechanical properties? The first,
“static”, question can be asked in more specific ways as (a)
What is the probability for a cluster to include n NPs? and (b)
What is the size of the percolated structure? Although electron
and atomic force microscopies have been frequently used to
visualize such percolated NP structures, it is difficult to define
precisely the three-dimensional percolated structure.1,2,12−14

Scattering is also frequently used to study the structure, in
particular, the fractal dimension in reciprocal space. While

lower fractal dimension is reported for fumed silicas,15 a fractal
dimension of df = 2.4 ± 0.3 is reported for aggregated silica-
NPs,16 consistent with the fractal dimension of 2.53 for critical
percolation. Compared with experiments, simulation can more
easily define the percolated structure,11,12 but this result is
found to strongly rely on the assumed interparticle potential.
According to computer simulation combining mean-field
theory with Monte Carlo simulations,11 critical percolation
theory is the relevant theory here in the strong interaction limit.
The second question is on dynamics, which are also controlled
by the interaction potential between NPs, but in the strong-
interaction limit that we focus on here, where the interaction far
exceeds the thermal energy kBT, the bridges between particles
become effectively permanent on the time scale of our
measurements.
Here, an analytical theory is developed to predict the linear

viscoelasticity corresponding to the sol−gel transition of NPs
based on critical percolation.17 We assume that the complex
modulus of the nanocomposite is the sum of two contributions:
one from the surrounding polymer matrix and the other from
the particle network bridged by polymer chains, that is, G*(ω)
= Gpolymer* (ω) + GPN* (ω).
The simplest assumption, which follows from recent

computer simulations, is that the modulus of the polymer
with the NPs has the same mode distribution of relaxation
times as the bulk polymer: Gpolymer* = κGbulk* , where κ (>1) is a
factor characterizing the increase in the polymer’s modulus due
to the presence of the NPs. In general, κ can be expressed as a
function of filler volume fraction ϕ, κ = Gpolymer* /Gbulk* = 1 + c1ϕ
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+ c2ϕ
2 + ... Einstein, Batchelor, and Brady analyzed the effect of

hydrodynamic interaction with immobile particles to conclude
c1 = 2.5 and c2 = 5.2−7.10,18−20 Nevertheless, higher order
terms having unknown coefficients also contribute to κ,
especially at high ϕ.9,10,21−23 To address this problem,
phenomenological equations such as the Guth−Gold equation
or Krieger−Dougherty equation are frequently used as
substitutes.24,25

Here, an effective volume fraction ϕeff is calculated by
accounting for the fact there exists an interfacial region where
segmental mobility of polymer chains is greatly reduced. The
existence of this interfacial bound layer has been suggested by
various experimental techniques.14,26−32 The bound layer
thickness was reported to vary between δ = 1−5 nm depending
on the size of spherical NPs, chemistry of polymer, and strength
of NPs/polymer interaction. In good agreement, our recent
studies using TGA and dielectric spectroscopy suggest δ = 1−4
nm for the silica/poly(2-vinylpyridine) nanocomposites, the
model systems studied in this letter.14,33 Due to the immobile
bound layer, the effective filler volume fraction would be ϕeff =
ϕ(r + δ)3/r3 for NPs with bound polymer.
In summary, the modulus of the polymer matrix is expressed

by the Guth-Gold equation as24

κ* = *G Gpolymer bulk (1a)

κ ϕ ϕ ϕ ϕ δ= + + = +r r1 2.5 14.1 , with ( ) /eff eff
2

eff
3 3

(1b)

The particle network part of the modulus is expressed using
the static and dynamic scaling of critical percolation:34,35 (1)
The number density of clusters of n NPs is P(n) ∼ n−τ for 1 ≤ n
≤ nchar with τ = 2.2 for critical percolation; nchar ∼ |ϕ−ϕc|

−1/σ

with ϕc being the volume fraction of NPs at the gel point, and σ
= 0.45 for critical percolation. (2) The cluster size R of
associated NPs as a function of n is R(n) ∼ n1/df, with df the
fractal dimension (larger df means a denser structure; df = 2.5
for critical percolation). (3) The cluster’s relaxation rate ε(n) ∼
D(n)/[R(n)]2 ∼ n−(2+df)/df, where D(n) ∼ n−1 is the diffusion
coefficient of a cluster containing n NPs.
The modulus at the relaxation time of a cluster of n NPs is

proportional to the fraction of clusters having more than n NPs:
GPN(n) ∼ n−1∫ n

nchar nP(n)dn ∼ n−τ+1, assuming that the number
of relaxation modes of each cluster is proportional to n. A
combination of GPN(n) ∼ n−τ+1 and relaxation frequency ε(n)
∼ n−(2+df)/df gives GPN(t) ∼t−df(τ − 1)/(2 + df) (∼t−2/3 for critical
percolation), meaning GPN* ∼ (iω)u with u = df(τ − 1)/(2 + df)
= 2/3 for critical percolation in the frequency domain. More
specifically, the complex modulus of the particle network GPN*
can be written as eq 2a when the NPs have not yet formed a
percolated network (i.e., below the gel point), and eq 2b when
the network has been formed (above the gel point):34
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with (I) df = 2.5, τ = 2.2 for critical percolation. (II) nchar ≅
|ϕ − ϕc|

−1/σ, with σ = 0.45 for critical percolation and ϕc
specifying the volume fraction corresponding to the gel point.
(III) ε0 = 1/τd and εchar ≅ ε0nchar

−(2 + df)/df, with τd being the
terminal relaxation time of the surrounding polymer matrix.
The former equation is reasonable when particle size is larger
than the entanglement mesh size of the polymer matrix.
In eq 2, the amplitude GPN is the only parameter to be

specified. To this end, focus is placed on the modulus per
particle, that is, GPN normalized by vparticlekT, with vparticle being
the number density of particles.36−38 Previous studies revealed
a power law dependence GPN ∼ ϕ m, with m ≈ 3−5 for strong
particle−particle interactions.9 In this study, the particles
bridged by polymer chains are assumed to store the stress,
with GPN = vparticlekBTnb

36−38 and nb the number of bridges per
particle. de Gennes predicted that the density (number per
area) of bridging chains ∼ h−2, where h = rf(ϕ) is the distance
between two plates of size r. Then, the number of bridges per
particle is nb = S/h2 = 4πr2/{rf(ϕ)}2 = 4π/f(ϕ)2, with S = 4πr2

the surface area of each particle.39

Considering a particle should occupy a volume of V ∼ r3/ϕ,
the average distance between particle surfaces would be hav =
V1/3 − 2r ≈ 2r(ϕ−1/3 −1), that is, f(ϕ) = 2ϕ−1/3 − 2.
Nevertheless, particles are not uniformly distributed and bridge
density should be controlled by the mean nearest-neighbor
distance. Torquato, Lu, and Rubinstein analyzed the nearest
neighbor probability density function to obtain an expression
allowing numerical calculation of the mean nearest-neighbor
distance as40

∫ ϕ ϕ ϕ ϕ

ϕ ϕ

= − + − − +

− + − −

∞
h r x

x x x

2 exp{ [8(1 )( 1) 6 (3 )

( 1) 12 ( 1)]/(1 ) }d

near
1

3

2 2 3
(3)

where hnear can be analytically approximated40 for ϕ > 0.2 as
hnear ≈ r(1 − ϕ)3/[6ϕ(2 − ϕ)], see equation 6.12 of ref 40.
(IV) the amplitude GPN = vparticlekBTnb, with nb ≅ 4πr2/hnear

2.
This expression is valid only if hnear is in the range between
segment size b and chain size R of the matrix. Since the mean
size of bridging chains is ∼hnear, the volume per bridge is
(hnear

2/b2) × b3, and the ratio of volume of bridges per particle
and particle volume Vparticle = 4πr3/3 is ∼nb × (hnear

2/b2) × b3/
Vparticle = 3b/r, meaning that the volume fraction of bridging
chains is 3ϕb/r, which is usually smaller than ϕ since b < r/3.
Figure 1 schematically illustrates G′polymer and G′PN as

functions of angular frequency ω based on critical percolation.
With NPs present, G′polymer has the same relaxation frequency,

Figure 1. Schematic illustration of polymer and particle network
components of storage modulus as functions of angular frequency ω.
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ε0, but larger amplitude compared with that of the bulk
polymer, from hydrodynamic coupling with the less mobile
NPs. The relaxation of the NP clusters G′PN is activated by that
of G′polymer. G′PN then has a power law viscoelasticity with slope
2/3 that continues until the cutoff frequency εchar of the largest
cluster, followed by either a terminal relaxation below the gel
point or a network modulus above the gel point.
To test the validity of this model of mechanical relaxation for

nanocomposites, silica NPs (Nissan Chemicals) with various
radii r (=7, 11.5, 25, and 50 nm) were well-dispersed in a
poly(2-vinylpyridine) matrix (P2VP from Polymer Source, Mn
= 97000; Mw/Mn = 1.08; Tg = 371 K), with the weight fractions
w of NPs varied from 0 to 50 wt %, corresponding to volume
fractions ϕ up to 34%. The P2VP is chosen due to its strong
hydrogen bonding interaction to the silica surface, which
facilitates the uniform dispersion of the NPs in the polymer.1,14

We believe that a bound layer of polymer with a long lifetime
forms at the particle surface, allowing the polymer bridges to be
permanent on the time scales of our measurements.
The samples were prepared by solution casting from either 2-

butanone (for r = 7 and 25 nm silica) or isopropanol (for r =
11.5 and 50 nm silica) with pyridine (Sigma-Aldrich) as
dispersant.14 Ultrasonication was applied in solution to improve
dispersion of nanoparticles, confirmed by TEM in our previous
study. The cast samples were first annealed under vacuum for 7
days at 80 °C and then 10 days at 150 °C prior to being
molded into ∼1 mm thick and 7.9 mm diameter discs. Linear
viscoelastic (LVE) measurements were conducted, under N2,
for those discs between 7.9 mm diameter parallel plates on an
Advanced Rheometric Expansion System ARES-LS1 rheometer
(Rheometric Scientific) at 180 °C. The linear strain amplitudes
were verified by strain amplitude sweeps.
Figure 2 shows the linear viscoelastic storage and loss

moduli, G′ and G″, as functions of angular frequency ω for
silica NPs (r = 7, 11.5, 25, and 50 nm) dispersed in the P2VP
matrix at T = 180 °C. At the highest frequencies studied, the
modulus of nanocomposites increases with the volume fraction
of NPs, the increase becomes weaker with increasing particle
size. At ω lower than the terminal relaxation of the polymer, an
additional stress component manifests: For low NP content (ϕ
= 6%), a transition from power law to terminal relaxation can
be observed, corresponding to relaxation of nanoparticle
clusters below their gel point. Finally, at high content of
nanoparticles, a low ω plateau can be observed, reflecting the
formation of a percolated NP-network (gel). The thin solid
curves in Figure 2 are predictions from the proposed model.
The overall agreement between experimental results and model
predictions is remarkable, supporting the molecular view that
the NP gelation obeys critical percolation with bridging
chains5−8 bearing the stress as long as the mean nearest-
neighbor distance between particles is larger than the Kuhn
length. Nevertheless, deviations can be clearly seen at high
loading of small NPs, which we will understand below.
For the polymer part of the modulus, the bound layer

thickness δ gives the effective volume fraction ϕeff. Since our
recent studies suggest δ = 1−4 nm for the same silica/P2VP
nanocomposites, a reasonable choice δ = 2 nm is made here for
all the nanocomposites.14,33

For the particle network component of the modulus, the gel
point must first be determined. In LVE, the gel point is
identified from a low frequency power law as G′ ∼ G″ ∼ ωu,
with u = 2/3 for critical percolation.35,41−44 This feature allows
determination of ϕc, where G′ and G″/tan(π/3) cross at low

frequency, as explained in Figure S1 of Supporting Information,
which yields ϕc = 16, 22, 29, and 34 (±5)% for r = 7, 11.5, 25,
and 50 nm, respectively. ϕc is plotted against r in the inset of
Figure 2(a2). The powers G′ ∼ G″ ∼ ω 2/3 at the gel point ϕc
are shown in thick red solid lines in Figure 2. Meanwhile, the

Figure 2. Storage modulus G′ (top panels) and loss modulus G″
(bottom panels) at 180 °C, of silica/P2VP nanocomposites with
particle sizes r = 7, 11.5, 25, and 50 nm and volume fraction ϕ as
indicated. Thin solid curves are predictions. Thick solid lines indicate
the lines G′ ∼ G″ ∼ ωu, with G″/G′ = tan(uπ/2) and u = 2/3 for
critical percolation expected at the gel point ϕc. Inset of panel (a2)
shows the dependence of ϕc on particle size r of the volume fraction of
NPs at the gel point. ϕc is determined from raw G′ and G″ data at low
ω, as explained in Figure S1 of Supporting Information. Insets of
panels (b2), (c2), and (d2) are TEM images of the nanocomposites
with ϕ = 26%.
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characteristic time for particle motion (III) ε0 = 1/τd is
reasonable when NPs are considerably larger than the
entanglement mesh size of the polymer matrix. Here, the
diameter of particles 2r ≥ 14 nm is larger than entanglement
length a = 13 nm for P2VP (calculated from a2 = Me⟨R

2⟩/M,
with ⟨R2⟩/M = 6.6 × 10−3 nm2 for P2VP in a θ solvent45 and
Me = 27000 for P2VP46).
In addition, (IV) GPN ≅ vparticlekBTnb, with nb = 4πr2/hnear

2 is
based on an assumption of flexible bridges: this assumption is
valid only if hnear is in between the segment and chain sizes of
the matrix polymer, i.e., in between Kuhn length b ≈ 1 nm and
the end-to-end distance R = 25 nm (see Figure S2 of
Supporting Information).3,4 In other words, the particles should
neither be too crowded, so that the bridges remain flexible, nor
too sparse, so that particle−particle bridges can form. We
define two critical concentrations ϕ* and ϕ**, at which hnear =
b and R, respectively. Using the analytical approximation b =
hnear ≈ r(1 − ϕ*)3/[6ϕ*(2 − ϕ*)] (the asymptotic expression
of eq 3 can be used since ϕ* > 0.2 is expected), there is an
analytical solution for ϕ*:

ϕ* = + − −

= − + − +

b r b r g b r g b r

g x x x x x

1 2 / /{ ( / )} ( / ),

with ( ) { 8 (9 48 ) 3 }

2 2

3 2 4 1/2 1/3
(4)

In Figure 3, ϕ is plotted against r for all nanocomposites in
this study to create a phase diagram. ϕ* and ϕ** from

numerical calculation (eq 3) are shown as the thin solid black
and dashed curves, respectively, while ϕ* from eq 4 is shown as
a thick solid orange curve for comparison. Both ϕ* and ϕ**
increase with r, where ϕ* separates regimes of rubbery flexible
bridges and glassy bridges, and ϕ** separates flexible bridge
and no bridge regimes. It is obvious that all the nanocomposites
in this study have sufficient particle concentration for bridges to
form. Nevertheless, for small particles at high loading, the
bridges are predicted to become nonflexible and glassy, see the
unfilled symbols for ϕ ≥ ϕ* (hnear ≤ b), which is likely
responsible for the failure of our prediction for the two highest
content samples with r = 7 nm, and the highest content sample
with r = 11.5 nm in Figure 2, considering that rubbery bridges
is one vital assumption of our flexible percolation model. Not
surprisingly, the data for ϕ = 26% and 34% of the r = 7 nm NPs
in Figures 2(a1) and 2(a2) are significantly above the flexible

bridge percolation model predictions, as these have some
mixture of flexible and more rigid glassy bridges between NPs.
In summary, a parameter free analytical model is proposed to

predict the LVE of hydrophilic NPs well-dispersed in a polar
polymer matrix with strong interactions between the particles
and the polymer, using critical percolation of NPs. This model
is applicable for particles that are neither too crowded nor too
sparse, so that the flexible bridges form between particles. The
limit where particles form glassy bridges when they are too
close is evident in our LVE data for small NPs at high loading,
exactly as anticipated by our phase diagram (Figure 3) and
perhaps described by other models,3,4 but that is left for future
work.

■ ASSOCIATED CONTENT
*S Supporting Information
Figure S1: determination of the gel point; Figure S2:
comparison of the mean nearest-neighbor distance hnear
between particles and segment and chain sizes of the polymer
matrix. This material is available free of charge via the Internet
at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: rhc@plmsc.psu.edu.
Author Contributions
‡These authors contributed equally to this work and are cofirst
authors (Q.C. and S.G.).
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors gratefully acknowledge the financial support of the
National Science Foundation Grant DMR-1006659.

■ REFERENCES
(1) Kumar, S. K.; Krishnamoorti, R. Annu. Rev. Chem. Biomol. 2010,
1, 37.
(2) Moll, J. F.; Akcora, P.; Rungta, A.; Gong, S. S.; Colby, R. H.;
Benicewicz, B. C.; Kumar, S. K. Macromolecules 2011, 44, 7473.
(3) Long, D.; Sotta, P. Rheol. Acta 2007, 46, 1029.
(4) Long, D.; Lequeux, F. Eur. Phys. J. E 2001, 4, 371.
(5) Maier, P. G.; Goritz, D. Kautsch. Gummi Kunstst. 1996, 49, 18.
(6) Zhu, A. J.; Sternstein, S. S. Compos. Sci. Technol. 2003, 63, 1113.
(7) Sternstein, S. S.; Zhu, A. J. Macromolecules 2002, 35, 7262.
(8) Sternstein, S. S.; Ramorino, G.; Jiang, B.; Zhu, A. J. Rubber Chem.
Technol. 2005, 78, 258.
(9) Larson, R. G. The Structure and Rheology of Complex Fluids;
Oxford University Press: New York, 1999.
(10) Mewis, J.; Wagner, N. J. Colloidal Suspension Rheology;
Cambridge University Press: Cambridge ; New York, 2012.
(11) Surve, M.; Pryamitsyn, V.; Ganesan, V. Phys. Rev. Lett. 2006, 96.
(12) Akcora, P.; Liu, H.; Kumar, S. K.; Moll, J.; Li, Y.; Benicewicz, B.
C.; Schadler, L. S.; Acehan, D.; Panagiotopoulos, A. Z.; Pryamitsyn, V.;
Ganesan, V.; Ilavsky, J.; Thiyagarajan, P.; Colby, R. H.; Douglas, J. F.
Nat. Mater. 2009, 8, 354.
(13) Akcora, P.; Kumar, S. K.; Moll, J.; Lewis, S.; Schadler, L. S.; Li,
Y.; Benicewicz, B. C.; Sandy, A.; Narayanan, S.; Illavsky, J.;
Thiyagarajan, P.; Colby, R. H.; Douglas, J. F. Macromolecules 2010,
43, 1003.
(14) Jouault, N.; Moll, J. F.; Meng, D.; Windsor, K.; Ramcharan, S.;
Kearney, C.; Kumar, S. K. ACS Macro Lett. 2013, 2, 371.
(15) Schaefer, D. W.; Justice, R. S. Macromolecules 2007, 40, 8501.
(16) Baeza, G. P.; Genix, A.-C.; Degrandcourt, C.; Petitjean, L.;
Gummel, J.; Couty, M.; Oberdisse, J. Macromolecules 2013, 46, 317.

Figure 3. Concentration ϕ plotted against particle size r (symbols).
Thin solid and thin dashed black curves represent critical
concentration ϕ* and ϕ** obtained from numerical calculation (eq
3), at which the mean nearest-neighbor spacing equals the Kuhn
length b = 1 nm and chain size R = 25 nm, respectively. Thick solid
orange curve is ϕ* from analytical calculation (eq 4).

ACS Macro Letters Letter

DOI: 10.1021/acsmacrolett.5b00002
ACS Macro Lett. 2015, 4, 398−402

401

http://pubs.acs.org
mailto:rhc@plmsc.psu.edu
http://dx.doi.org/10.1021/acsmacrolett.5b00002


(17) Stauffer, D.; Aharony, A. Introduction to Percolation Theory, 2nd
ed.; Taylor & Francis: London ; Washington, DC, 1992.
(18) Batchelor, G. K.; Green, J. T. J. Fluid Mech. 1972, 56, 375.
(19) Wagner, N. J.; Woutersen, A. T. J. M. J. Fluid Mech. 1994, 278,
267.
(20) Bergenholtz, J.; Brady, J. F.; Vicic, M. J. Fluid Mech. 2002, 456,
239.
(21) Chong, J. S.; Christiansen, E. B.; Baer, A. D. J. Appl. Polym. Sci.
1971, 15, 2007.
(22) Song, Y. H.; Zheng, Q. Polymer 2011, 52, 593.
(23) Song, Y. H.; Zheng, Q. Polymer 2011, 52, 6173.
(24) Guth, E.; Gold, O. Phys. Rev. 1938, 53, 322.
(25) Krieger, I. M.; Dougherty, T. J. Trans. Soc. Rheol. 1959, 3, 137.
(26) Bershtein, V. A.; Egorova, L. M.; Yakushev, P. N.; Pissis, P.;
Sysel, P.; Brozova, L. J. Polym. Sci., Polym. Phys. 2002, 40, 1056.
(27) Chen, K. H.; Yang, S. M. J. Appl. Polym. Sci. 2002, 86, 414.
(28) Rittigstein, P.; Priestley, R. D.; Broadbelt, L. J.; Torkelson, J. M.
Nat. Mater. 2007, 6, 278.
(29) Liu, X. H.; Wu, Q. J. Polymer 2001, 42, 10013.
(30) Fragiadakis, D.; Pissis, P.; Bokobza, L. Polymer 2005, 46, 6001.
(31) Ash, B. J.; Schadler, L. S.; Siegel, R. W. Mater. Lett. 2002, 55, 83.
(32) Walden, P. Z. Phys. Chem. 1906, 55, 207.
(33) Gong, S.; Chen, Q.; Moll, J. F.; Kumar, S. K.; Colby, R. H. ACS
Macro Lett. 2014, 3, 773.
(34) Rubinstein, M.; Colby, R. H.; Gillmor, J. R. Dynamics of Near-
Critical Polymer Gels; Springer-Verlag: Berlin; New York, 1989; Vol.
51.
(35) Rubinstein, M.; Colby, R. H. Polymer Physics; Oxford University
Press: New York, 2003.
(36) Aranguren, M. I.; Mora, E.; Degroot, J. V.; Macosko, C. W. J.
Rheol. 1992, 36, 1165.
(37) Zhu, Z. Y.; Thompson, T.; Wang, S. Q.; von Meerwall, E. D.;
Halasa, A. Macromolecules 2005, 38, 8816.
(38) Otsubo, Y.; Nakane, Y. Langmuir 1991, 7, 1118.
(39) de Gennes, P. G. Adv. Colloid Interface 1987, 27, 189.
(40) Torquato, S.; Lu, B.; Rubinstein, J. Phys. Rev. A 1990, 41, 2059.
(41) Derosa, M. E.; Winter, H. H. Rheol. Acta 1994, 33, 220.
(42) Chen, Q.; Colby, R. H. Korea−Australia Rheol. J. 2014, 26, 257.
(43) Chen, Q.; Huang, C.; Weiss, R. A.; Colby, R. H. Macromolecules
2015, 48, 1221.
(44) Lusignan, C. P.; Mourey, T. H.; Wilson, J. C.; Colby, R. H. Phys.
Rev. E 1995, 52, 6271.
(45) Brandrup, J.; Immergut, E. H.; Grulke, E. A. Polymer Handbook,
4th ed.; Wiley: New York, 1999.
(46) Tan, N. C. B.; Peiffer, D. G.; Briber, R. M. Macromolecules 1996,
29, 4969.

ACS Macro Letters Letter

DOI: 10.1021/acsmacrolett.5b00002
ACS Macro Lett. 2015, 4, 398−402

402

http://dx.doi.org/10.1021/acsmacrolett.5b00002

